
3385 Scott Blvd., Santa Clara, CA 95054 Tel: +1/408.727.6600 Fax: +1/408.727.6622
CATC Scripting Language
Reference Manual
CSL Version 1.10

Document Revision 1.12

February 23, 2004

CATC SCRIPTING LANGUAGE

Reference Manual
CATC Scripting Language Reference Manual
Document Revision 1.12

Based on CSL Version 1.10.

Document Disclaimer
The information contained in this document has been carefully checked and is
believed to be reliable. However, no responsibility can be assumed for inaccuracies
that may not have been detected.

CATC reserves the right to revise the information presented in this document
without notice or penalty.

Trademarks and Servicemarks
CATC is a trademark of Computer Access Technology Corporation.

All other trademarks are property of their respective companies.

Copyright
Copyright 2004, Computer Access Technology Corporation (CATC). All rights
reserved.

This document may be printed and reproduced without additional permission, but
all copies should contain this copyright notice.
ii

CATC SCRIPTING LANGUAGE
Reference Manual Table of Contents
TABLE OF CONTENTS

1 Introduction . 1
Features of CATC Scripting Language . 1
New in CSL Version 1.1 . 1
New in Document Revision 1.11 . 1
New in Document Revision 1.12 . 2

2 Values . 3
Literals . 3

Integers . 3
Strings . 3

Escape Sequences . 4
Lists . 4
Raw Bytes . 4
Null . 4

Variables . 5
Global Variables . 5
Local Variables . 6

Constants . 6

3 Expressions . 7
select expression . 7

4 Operators . 9
Operations . 9
Operator Precedence and Associativity . 9

5 Comments . 17

6 Keywords . 19

7 Statements . 21
Expression Statements . 21
if Statements . 21
if-else Statements . 21
while Statements . 22
for Statements . 22
return Statements . 23
 iii

CATC SCRIPTING LANGUAGE

Reference Manual Table of Contents
Compound Statements . 24

8 Preprocessing . 27

9 Context . 29

10 Functions . 31

11 Primitives . 33
Call() . 33
Format() . 33

Format Conversion Characters . 34
GetNBits() . 35
NextNBits() . 36
Resolve() . 37
Trace() . 37

12 Decoder Primitives . 39
Abort() . 39
AddCell() . 39
AddDataCell() . 41
AddEvent() . 42
AddSeparator() . 43
BeginCellBlock() . 43
Complete() . 46
EndCellBlock() . 47
GetBitOffset() . 47
PeekNBits() . 48
Pending() . 48
Reject() . 49

13 Modules . 51
Module Functions . 51

ProcessData() . 51
CollectData() . 51
BuildCellList() . 51

Module Data . 52
ModuleType . 52
OutputType . 52
InputType . 52
LevelName . 52
iv

CATC SCRIPTING LANGUAGE
Reference Manual Table of Contents
DecoderDesc . 52
Icon . 53

How to Contact CATC . 55
 v

CATC SCRIPTING LANGUAGE

Reference Manual Table of Contents
vi

CATC SCRIPTING LANGUAGE CHAPTER 1

Reference Manual Introduction
CHAPTER 1: INTRODUCTION
CATC Scripting Language (CSL) was developed to create scripts that would allow
users to do file-based decoding with CATC analyzers. CSL is used to edit CATC
Decode Scripting (CDS) files. CATC analyzers are equipped with built-in decoders
in addition to script-based decoders that can be modified by the users or implement-
ed as-is. Decoding scripts for analyzers are distributed in the /scripts directory.
These scripts are tools to decode and display transactions. Users can also add
entirely new, customized decoders.

CSL is based on C language syntax, so anyone with a C programming background
will have no trouble learning CSL. The simple, yet powerful, structure of CSL also
enables less experienced users to easily acquire the basic knowledge needed to start
writing custom scripts.

Features of CATC Scripting Language
• Powerful -- provides a high-level API while simultaneously allowing

implementation of complex algorithms.

• Easy to learn and use -- has a simple but effective syntax.

• Self-contained -- needs no external tools to run scripts.

• Wide range of value types -- provides efficient and easy processing of data.

• Used to create built-in script-based decoders for analyzers.

• May be used to write custom decoders.

• General purpose -- is integrated in a number of CATC products.

New in CSL Version 1.1
• Compound assignment operators added

• Increment and decrement operators added

New in Document Revision 1.11
• Fixed typos in examples for Call(), GetNBits(), NextNBits(),

Trace(), GetBitOffset(), and PeekNBits().
 1

CATC SCRIPTING LANGUAGE CHAPTER 1

Reference Manual Introduction
New in Document Revision 1.12
• Added new CATC address.
2

CATC SCRIPTING LANGUAGE CHAPTER 2

Reference Manual Values
CHAPTER 2: VALUES
There are five value types that may be manipulated by a script: integers, strings,
lists, raw bytes, and null. CSL is not a strongly typed language. Value types need
not be pre-declared. Literals, variables and constants can take on any of the five
value types, and the types can be reassigned dynamically.

Literals
Literals are data that remain unchanged when the program is compiled. Literals are
a way of expressing hard-coded data in a script.

Integers
Integer literals represent numeric values with no fractions or decimal points. Hexa-
decimal, octal, decimal, and binary notation are supported:

Hexadecimal numbers must be preceded by 0x: 0x2A, 0x54, 0xFFFFFF01

Octal numbers must begin with 0: 0775, 017, 0400

Decimal numbers are written as usual: 24, 1256, 2

Binary numbers are denoted with 0b: 0b01101100, 0b01, 0b100000

Strings
String literals are used to represent text. A string consists of zero or more characters
and can include numbers, letters, spaces, and punctuation. An empty string ("")
contains no characters and evaluates to false in an expression, whereas a non-empty
string evaluates to true. Double quotes surround a string, and some standard
backslash (\) escape sequences are supported.

String Represented text

"Quote: \"This is a string
literal.\""

Quote: "This is a string
literal."

"256" 256 **Note that this does not represent the integer

256, but only the characters that make up the number.

"abcd!$%&*" abcd!$%&*

"June 26, 2001" June 26, 2001

"[1, 2, 3]" [1, 2, 3]

Table 2.1: Examples of String Literals
 3

CATC SCRIPTING LANGUAGE CHAPTER 2

Reference Manual Values
Escape Sequences
These are the available escape sequences in CSL:

Lists
A list can hold zero or more pieces of data. A list that contains zero pieces of data
is called an empty list. An empty list evaluates to false when used in an expression,
whereas a non-empty list evaluates to true. List literals are expressed using the
square bracket ([]) delimiters. List elements can be of any type, including lists.

[1, 2, 3, 4]
[]
["one", 2, "three", [4, [5, [6]]]]

Raw Bytes
Raw binary values are used primarily for efficient access to packet payloads. A
literal notation is supported using single quotes:

'00112233445566778899AABBCCDDEEFF'

This represents an array of 16 bytes with values starting at 00 and ranging up to
0xFF. The values can only be hexadecimal digits. Each digit represents a nybble
(four bits), and if there are not an even number of nybbles specified, an implicit zero
is added to the first byte. For example:

'FFF'

is interpreted as

'0FFF'

Null
Null indicates an absence of valid data. The keyword null represents a literal
null value and evaluates to false when used in expressions.

Character
Escape

Sequence Example Output

backslash \\ "This is a backslash: \\" This is a backslash: \

double quote \" "\"Quotes!\"" "Quotes!"

horizontal tab \t "Before tab\tAfter tab" Before tab After tab

newline \n "This is how\nto get a newline." This is how
to get a newline.

single quote \' "\'Single quote\'" 'Single quote'

Table 2.2: Escape Sequences
4

CATC SCRIPTING LANGUAGE CHAPTER 2

Reference Manual Values
result = null;

Variables
Variables are used to store information, or data, that can be modified. A variable
can be thought of as a container that holds a value.

All variables have names. Variable names must contain only alphanumeric charac-
ters and the underscore (_) character, and they cannot begin with a number. Some
possible variable names are

x
_NewValue
name_2

A variable is created when it is assigned a value. Variables can be of any value type,
and can change type with re-assignment. Values are assigned using the assignment
operator (=). The name of the variable goes on the left side of the operator, and the
value goes on the right:

x = [1, 2, 3]
New_value = x
name2 = "Smith"

If a variable is referenced before it is assigned a value, it evaluates to null.

There are two types of variables: global and local.

Global Variables
Global variables are defined outside of the scope of functions. Defining global
variables requires the use of the keyword set. Global variables are visible through-
out a file (and all files that it includes).

set Global = 10;

If an assignment in a function has a global as a left-hand value, a variable will not
be created, but the global variable will be changed. For example

set Global = 10;

Function()
{

Global = "cat";
Local = 20;

}

 5

CATC SCRIPTING LANGUAGE CHAPTER 2

Reference Manual Values
will create a local variable called Local, which will only be visible within the
function Function. Additionally, it will change the value of Global to "cat",
which will be visible to all functions. This will also change its value type from an
integer to a string.

Local Variables
Local variables are not declared. Instead, they are created as needed. Local
variables are created either by being in a function's parameter list, or simply by
being assigned a value in a function body.

Function(Parameter)
{

Local = 20;
}

This function will create a local variable Parameter and a local variable Local,
which has an assigned value of 20.

Constants
A constant is similar to a variable, except that its value cannot be changed. Like
variables, constant names must contain only alphanumeric characters and the un-
derscore (_) character, and they cannot begin with a number.

Constants are declared similarly to global variables using the keyword const:

const CONSTANT = 20;

They can be assigned to any value type, but will generate an error if used in the left-
hand side of an assignment statement later on. For instance,

const constant_2 = 3;

Function()
{

constant_2 = 5;
}

will generate an error.

Declaring a constant with the same name as a global, or a global with the same name
as a constant, will also generate an error. Like globals, constants can only be
declared in the file scope.
6

CATC SCRIPTING LANGUAGE CHAPTER 3

Reference Manual Expressions
CHAPTER 3: EXPRESSIONS
An expression is a statement that calculates a value. The simplest type of expression
is assignment:

x = 2

The expression x = 2 calculates 2 as the value of x.

All expressions contain operators, which are described in Chapter 4, Operators, on
page 9. The operators indicate how an expression should be evaluated in order to
arrive at its value. For example

x + 2

says to add 2 to x to find the value of the expression. Another example is

x > 2

which indicates that x is greater than 2. This is a Boolean expression, so it will
evaluate to either true or false. Therefore, if x = 3, then x > 2 will evaluate to
true; if x = 1, it will return false.

True is denoted by a non-zero integer (any integer except 0), and false is a zero
integer (0). True and false are also supported for lists (an empty list is false, while
all others are true), and strings (an empty string is false, while all others are true),
and null is considered false. However, all Boolean operators will result in integer
values.

select expression
The select expression selects the value to which it evaluates based on Boolean
expressions. This is the format for a select expression:

select {
<expression1> : <statement1>
<expression2> : <statement2>
...

};

The expressions are evaluated in order, and the statement that is associated with the
first true expression is executed. That value is what the entire expression evaluates
to.
 7

CATC SCRIPTING LANGUAGE CHAPTER 3

Reference Manual Expressions
x = 10
Value_of_x = select {

x < 5 : "Less than 5";
x >= 5 : "Greater than or equal to 5";

};

The above expression will evaluate to “Greater than or equal to 5” because the first
true expression is x >= 5. Note that a semicolon is required at the end of a
select expression because it is not a compound statement and can be used in an
expression context.

There is also a keyword default, which in effect always evaluates to true. An
example of its use is

Astring = select {
A == 1 : "one";
A == 2 : "two";
A == 3: "three";
A > 3 : "overflow";
default : null;

};

If none of the first four expressions evaluates to true, then default will be eval-
uated, returning a value of null for the entire expression.

select expressions can also be used to conditionally execute statements, similar
to C switch statements:

select {
A == 1 : DoSomething();
A == 2 : DoSomethingElse();
default: DoNothing();

};

In this case the appropriate function is called depending on the value of A, but the
evaluated result of the select expression is ignored.
8

CATC SCRIPTING LANGUAGE CHAPTER 4

Reference Manual Operators
CHAPTER 4: OPERATORS
An operator is a symbol that represents an action, such as addition or subtraction,
that can be performed on data. Operators are used to manipulate data. The data
being manipulated are called operands. Literals, function calls, constants, and
variables can all serve as operands. For example, in the operation

x + 2

the variable x and the integer 2 are both operands, and + is the operator.

Operations
Operations can be performed on any combination of value types, but will result in
a null value if the operation is not defined. Defined operations are listed in the
Operand Types column of Table 4.2 on page 12. Any binary operation on a null and
a non-null value will result in the non-null value. For example, if

x = null

then

3 * x

will return a value of 3.

A binary operation is an operation that contains an operand on each side of the
operator, as in the preceding examples. An operation with only one operand is
called a unary operation, and requires the use of a unary operator. An example of a
unary operation is

!1

which uses the logical negation operator. It returns a value of 0.

The unary operators are sizeof(), head(), tail(), ~ and !.

Operator Precedence and Associativity
Operator rules of precedence and associativity determine in what order operands are
evaluated in expressions. Expressions with operators of higher precedence are
evaluated first. In the expression

4 + 9 * 5

the * operator has the highest precedence, so the multiplication is performed before
the addition. Therefore, the expression evaluates to 49.
 9

CATC SCRIPTING LANGUAGE CHAPTER 4

Reference Manual Operators
The associative operator () is used to group parts of the expression, forcing those
parts to be evaluated first. In this way, the rules of precedence can be overridden.
For example,

(4 + 9) * 5

causes the addition to be performed before the multiplication, resulting in a value
of 65.

When operators of equal precedence occur in an expression, the operands are
evaluated according to the associativity of the operators. This means that if an op-
erator's associativity is left to right, then the operations will be done starting from
the left side of the expression. So, the expression

4 + 9 - 6 + 5

would evaluate to 12. However, if the associative operator is used to group a part or
parts of the expression, those parts are evaluated first. Therefore,

(4 + 9) - (6 + 5)

has a value of 2.

In Table 4.1, Operator Precedence and Associativity, the operators are listed in
order of precedence, from highest to lowest. Operators on the same line have equal
precedence, and their associativity is shown in the second column.

Operator Symbol Associativity

++ -- Right to left

[] () Left to right

~ ! sizeof head tail Right to left

* / % Left to right

+ - Left to right

<< >> Left to right

< > <= >= Left to right

== != Left to right

& Left to right

^ Left to right

| Left to right

&& Left to right

|| Left to right

Table 4.1: Operator Precedence and Associativity
10

CATC SCRIPTING LANGUAGE CHAPTER 4

Reference Manual Operators
= += -= *= /= %= >>= <<= &=
^= |=

Right to left

Operator Symbol Associativity

Table 4.1: Operator Precedence and Associativity (Continued)
 11

CATC SCRIPTING LANGUAGE CHAPTER 4

Reference Manual Operators
Operator
Symbol Description

Operand
Types

Result
Types Examples

Index Operator

[] Index or
subscript

Raw Bytes Integer Raw = '001122'
Raw[1] = 0x11

List Any List = [0, 1, 2, 3, [4, 5]]
List[2] = 2
List[4] = [4, 5]
List[4][1] = 5
*Note: if an indexed Raw value is assigned to any
value that is not a byte (> 255 or not an integer), the
variable will be promoted to a list before the
assignment is performed.

Associative Operator

() Associative Any Any (2 + 4) * 3 = 18
2 + (4 * 3) = 14

Arithmetic Operators

* Multiplication Integer-integer Integer 3 * 1 = 3

/ Division Integer-integer Integer 3 / 1 = 3

% Modulus Integer-integer Integer 3 % 1 = 0

+ Addition Integer-integer Integer 2 + 2 = 4

String-string String "one " + "two" = "one two"

Raw byte-raw byte Raw '001122' + '334455' =
'001122334455'

List-list List [1, 2] + [3, 4] = [1, 2, 3, 4]

Integer-list List 1 + [2, 3] = [1, 2, 3]

Integer-string String "number = " + 2 = "number = 2"
*Note: integer-string concatenation uses decimal
conversion.

String-list List "one" + ["two"] = ["one", "two"]

- Subtraction Integer-integer Integer 3 – 1 = 2

Increment and Decrement Operators

++ Increment Integer Integer a = 1
++a = 2

b = 1
b++ = 1
*Note that the value of b after execution is 2.

-- Decrement Integer Integer a = 2
--a = 1

b = 2
b-- = 2
*Note that the value of b after execution is 1.

Table 4.2: Operators
12

CATC SCRIPTING LANGUAGE CHAPTER 4

Reference Manual Operators
Equality Operators

== Equal Integer-integer Integer 2 == 2

String-string Integer "three" == "three"

Raw byte-raw byte Integer '001122' == '001122'

List-list Integer [1, [2, 3]] == [1, [2, 3]]
*Note: equality operations on values of different
types will evaluate to false.

!= Not equal Integer-integer Integer 2 != 3

String-string Integer "three" != "four"

Raw byte-raw byte Integer '001122' != '334455'

List-list Integer [1, [2, 3]] != [1, [2, 4]]
*Note: equality operations on values of different
types will evaluate to false.

Relational Operators

< Less than Integer-integer Integer 1 < 2

String-string Integer "abc" < "def"

> Greater than Integer-integer Integer 2 > 1

String-string Integer "xyz" > "abc"

<= Less than or
equal

Integer-integer Integer 23 <= 27

String-string Integer "cat" <= "dog"

>= Greater than or
equal

Integer-integer Integer 2 >= 1

String-string Integer "sun" >= "moon"
*Note: relational operations on string values are
evaluated according to character order in the ASCII
table.

Logical Operators

! Negation All combinations
of types

Integer !0 = 1 !"cat" = 0
!9 = 0 !"" = 1

&& Logical AND All combinations
of types

Integer 1 && 1 = 1 1 && !"" = 1
1 && 0 = 0 1 && "cat" = 1

|| Logical OR All combinations
of types

Integer 1 || 1 = 1 0 || 0 = 0
1 || 0 = 1 "" || !"cat" = 0

Operator
Symbol Description

Operand
Types

Result
Types Examples

Table 4.2: Operators (Continued)
 13

CATC SCRIPTING LANGUAGE CHAPTER 4

Reference Manual Operators
Bitwise Logical Operators

~ Bitwise
complement

Integer-integer Integer ~0b11111110 = 0b00000001

& Bitwise AND Integer-integer Integer 0b11111110 & 0b01010101 =
0b01010100

^ Bitwise
exclusive OR

Integer-integer Integer 0b11111110 ^ 0b01010101 =
0b10101011

| Bitwise
inclusive OR

Integer-integer Integer 0b11111110 | 0b01010101 =
0b11111111

Shift Operators

<< Left shift Integer-integer Integer 0b11111110 << 3 = 0b11110000

>> Right shift Integer-integer Integer 0b11111110 >> 1 = 0b01111111

Assignment Operators

= Assignment Any Any A = 1
B = C = A

+= Addition
assignment

Integer-integer Integer x = 1
x += 1 = 2

String-string String a = "one "
a += "two" = "one two"

Raw byte-raw byte Raw z = '001122'
z += '334455' = '001122334455'

List-list List x = [1, 2]
x += [3, 4] = [1, 2, 3, 4]

Integer-list List y = 1
y += [2, 3] = [1, 2, 3]

Integer-string String a = "number = "
a += 2 = "number = 2"
*Note: integer-string concatenation uses decimal
conversion.

String-list List s = "one"
s + ["two"] = ["one", "two"]

-= Subtraction
assignment

Integer-integer Integer y = 3
y –= 1 = 2

*= Multiplication
assignment

Integer-integer Integer x = 3
x *= 1 = 3

/= Division
assignment

Integer-integer Integer s = 3
s /= 1 = 3

%= Modulus
assignment

Integer-integer Integer y = 3
y %= 1 = 0

>>= Right shift
assignment

Integer-integer Integer b = 0b11111110
b >>= 1 = 0b01111111

<<= Left shift
assignment

Integer-integer Integer a = 0b11111110
a <<= 3 = 0b11111110000

Operator
Symbol Description

Operand
Types

Result
Types Examples

Table 4.2: Operators (Continued)
14

CATC SCRIPTING LANGUAGE CHAPTER 4

Reference Manual Operators
Assignment Operators (continued)

&= Bitwise AND
assignment

Integer-integer Integer a = 0b11111110
a &= 0b01010101 = 0b01010100

^= Bitwise
exclusive OR
assignment

Integer-integer Integer e = 0b11111110
e ^= 0b01010101 = 0b10101011

|= Bitwise
inclusive OR
assignment

Integer-integer Integer i = 0b11111110
i |= 0b01010101 = 0b11111111

List Operators

sizeof() Number of
elements

Any Integer sizeof([1, 2, 3]) = 3
sizeof('0011223344') = 5
sizeof("string") = 6
sizeof(12) = 1
sizeof([1, [2, 3]]) = 2
*Note: the last example demonstrates that the
sizeof() operator returns the shallow count of a
complex list.

head() Head List Any head([1, 2, 3]) = 1
*Note: the Head of a list is the first item in the list.

tail() Tail List List tail([1, 2, 3]) = [2, 3]
*Note: the Tail of a list includes everything except
the Head.

Operator
Symbol Description

Operand
Types

Result
Types Examples

Table 4.2: Operators (Continued)
 15

CATC SCRIPTING LANGUAGE CHAPTER 4

Reference Manual Operators
16

CATC SCRIPTING LANGUAGE CHAPTER 5

Reference Manual Comments
CHAPTER 5: COMMENTS
Comments may be inserted into scripts as a way of documenting what the script
does and how it does it. Comments are useful as a way to help others understand
how a particular script works. Additionally, comments can be used as an aid in
structuring the program.

Comments in CSL begin with a hash mark (#) and finish at the end of the line. The
end of the line is indicated by pressing the Return or Enter key. Anything contained
inside the comment delimiters is ignored by the compiler. Thus,

x = 2;

is not considered part of the program. CSL supports only end-of-line comments,
which means that comments can be used only at the end of a line or on their own
line. It's not possible to place a comment in the middle of a line.

Writing a multi-line comment requires surrounding each line with the comment de-
limiters

otherwise the compiler would try to interpret
anything outside of the delimiters
as part of the code.

The most common use of comments is to explain the purpose of the code immedi-
ately following the comment. For example:

Add a profile if we got a server channel
if(rfChannel != "Failure")
{

result = SDPAddProfileServiceRecord(rfChannel,
"ObjectPush");

Trace("SDPAddProfileServiceRecord returned ",
result, "\n");
}

 17

CATC SCRIPTING LANGUAGE CHAPTER 5

Reference Manual Comments
18

CATC SCRIPTING LANGUAGE CHAPTER 6

Reference Manual Keywords
CHAPTER 6: KEYWORDS
Keywords are reserved words that have special meanings within the language. They
cannot be used as names for variables, constants or functions.

In addition to the operators, the following are keywords in CSL:

Keyword Usage

select select expression

set define a global variable

const define a constant

return return statement

while while statement

for for statement

if if statement

else if-else statement

default select expression

null null value

in input context

out output context

Table 6.1: Keywords
 19

CATC SCRIPTING LANGUAGE CHAPTER 6

Reference Manual Keywords
20

CATC SCRIPTING LANGUAGE CHAPTER 7

Reference Manual Statements
CHAPTER 7: STATEMENTS
Statements are the building blocks of a program. A program is made up of list of
statements.

Seven kinds of statements are used in CSL: expression statements, if statements, if-
else statements, while statements, for statements, return statements, and compound
statements.

Expression Statements
An expression statement describes a value, variable, or function.

<expression>

Here are some examples of the different kinds of expression statements:

Value: x + 3;
Variable: x = 3;
Function: Trace (x + 3);

The variable expression statement is also called an assignment statement, because
it assigns a value to a variable.

if Statements
An if statement follows the form

if <expression> <statement>

For example,

if (3 && 3) Trace("True!");

will cause the program to evaluate whether the expression 3 && 3 is nonzero, or
True. It is, so the expression evaluates to True and the Trace statement will be
executed. On the other hand, the expression 3 && 0 is not nonzero, so it would
evaluate to False, and the statement wouldn't be executed.

if-else Statements
The form for an if-else statement is

if <expression> <statement1>
else <statement2>

The following code
 21

CATC SCRIPTING LANGUAGE CHAPTER 7

Reference Manual Statements
if (3 - 3 || 2 - 2) Trace ("Yes");
else Trace ("No");

will cause “No” to be printed, because 3 - 3 || 2 - 2 will evaluate to False
(neither 3 - 3 nor 2 - 2 is nonzero).

while Statements
A while statement is written as

while <expression> <statement>

An example of this is

x = 2;
while (x < 5)
{

Trace (x, ", ");
x = x + 1;

}

The result of this would be

2, 3, 4,

for Statements
A for statement takes the form

for (<expression1>; <expression2>; <expression3>)
<statement>

The first expression initializes, or sets, the starting value for x. It is executed one
time, before the loop begins. The second expression is a conditional expression. It
determines whether the loop will continue -- if it evaluates true, the function keeps
executing and proceeds to the statement; if it evaluates false, the loop ends. The
third expression is executed after every iteration of the statement.

Figure 7-1: Execution of a for statement
22

CATC SCRIPTING LANGUAGE CHAPTER 7

Reference Manual Statements
The example

for (x = 2; x < 5; x = x + 1) Trace (x, "\n");

would output

2
3
4

The example above works out like this: the expression x = 2 is executed. The
value of x is passed to x < 5, resulting in 2 < 5. This evaluates to true, so the
statement Trace (x, "\n") is performed, causing 2 and a new line to print.
Next, the third expression is executed, and the value of x is increased to 3. Now,
x < 5 is executed again, and is again true, so the Trace statement is executed,
causing 3 and a new line to print. The third expression increases the value of x to 4;
4 < 5 is true, so 4 and a new line are printed by the Trace statement. Next, the
value of x increases to 5. 5 < 5 is not true, so the loop ends.

return Statements
Every function returns a value, which is usually designated in a return statement.
A return statement returns the value of an expression to the calling environment.
It uses the following form:

return <expression>;

An example of a return statement and its calling environment is

Trace (HiThere());
...
HiThere()
{

return "Hi there";
}

The call to the primitive function Trace causes the function HiThere() to be
executed. HiThere() returns the string “Hi there” as its value. This value is
passed to the calling environment (Trace), resulting in this output:

Hi there

A return statement also causes a function to stop executing. Any statements that
come after the return statement are ignored, because return transfers control
of the program back to the calling environment. As a result,
 23

CATC SCRIPTING LANGUAGE CHAPTER 7

Reference Manual Statements
Trace (HiThere());
...
HiThere()
{

a = "Hi there";
return a;
b = "Goodbye";
return b;

}

will output only

Hi there

because when return a; is encountered, execution of the function terminates,
and the second return statement (return b;) is never processed. However,

Trace (HiThere());
...
HiThere()
{

a = "Hi there";
b = "Goodbye";
if (3 != 3) return a;
else return b;

}

will output

Goodbye

because the if statement evaluates to false. This causes the first return statement
to be skipped. The function continues executing with the else statement, thereby
returning the value of b to be used as an argument to Trace.

Compound Statements
A compound statement, or statement block, is a group of one or more statements
that is treated as a single statement. A compound statement is always enclosed in
curly braces ({}). Each statement within the curly braces is followed by a semi-
colon; however, a semicolon is not used following the closing curly brace.

The syntax for a compound statement is

{
<first_statement>;
<second_statement>;
24

CATC SCRIPTING LANGUAGE CHAPTER 7

Reference Manual Statements
...
<last_statement>;

}

An example of a compound statement is

{
x = 2;
x + 3;

}

It's also possible to nest compound statements, like so:

{
x = 2;
{

y = 3;
}
x + 3;

}

Compound statements can be used anywhere that any other kind of statement can
be used.

if (3 && 3)
{

result = "True!";
Trace(result);

}

Compound statements are required for function declarations and are commonly
used in if, if-else, while, and for statements.
 25

CATC SCRIPTING LANGUAGE CHAPTER 7

Reference Manual Statements
26

CATC SCRIPTING LANGUAGE CHAPTER 8

Reference Manual Preprocessing
CHAPTER 8: PREPROCESSING
The preprocessing command %include can be used to insert the contents of a file
into a script. It has the effect of copying and pasting the file into the code. Using
%include allows the user to create modular script files that can then be incorpo-
rated into a script. This way, commands can easily be located and reused.

The syntax for %include is this:

%include “includefile.inc”

The quotation marks around the filename are required, and by convention, the
included file has a .inc extension.

The filenames given in the include directive are always treated as being relative to
the current file being parsed. So, if a file is referenced via the preprocessing
command in a .dec file, and no path information is provided (%include
“file.inc”), the application will try to load the file from the current directory.
Files that are in a directory one level up from the current file can be referenced using
“..\file.inc”, and likewise, files one level down can be referenced using the
relative pathname (“directory\file.inc”). Last but not least, files can also
be referred to using a full pathname, such as
“C:\global_scripts\include\file.inc”.
 27

CATC SCRIPTING LANGUAGE CHAPTER 8

Reference Manual Preprocessing
28

CATC SCRIPTING LANGUAGE CHAPTER 9

Reference Manual Context
CHAPTER 9: CONTEXT
The context is the mechanism by which transaction data is passed in and out of the
scripts. There is an output context that is modified by the script, and there are
possibly multiple input contexts that the script will be invoked on separately.

A context serves two roles: firstly, it functions as a symbol table whose values are
local to a particular transaction; secondly, it functions as an interface to the appli-
cation. Two keywords are used to reference symbols in the context: in and out.
Dot notation is used to specify a symbol within a context:

out.symbol = "abcd";
out.type = in.type;

The output context can be read and written to, but the input context can only be read.
Context symbols follow the same rules as local variables: they are created on
demand, and uninitialized symbols always evaluate to null.

When a script is first invoked, it is given an input context that corresponds to a
packet or transaction that is a candidate for being a part of a larger transaction. The
output context is initially empty. It is the script's job to examine the input context
and decide if it qualifies for membership in the type of transaction that the script
was designed to decode. If it qualifies, the appropriate values will be decoded and
put in the output context symbol table, and if the transaction is complete, it will be
done. If the transaction is not complete, the script will indicate this to the applica-
tion based on its return value, and will be invoked again with the same output
context, but a new input context. The script then must decide if this new input
context is a member of the transaction, and keep doing this until the transaction is
complete.

In order to accomplish all this, state information should be placed in the output
context. It should be possible to use the output context of one transaction as an
input context to another transaction.
 29

CATC SCRIPTING LANGUAGE CHAPTER 9

Reference Manual Context
30

CATC SCRIPTING LANGUAGE CHAPTER 10

Reference Manual Functions
CHAPTER 10: FUNCTIONS
A function is a named statement or a group of statements that are executed as one
unit. All functions have names. Function names must contain only alphanumeric
characters and the underscore (_) character, and they cannot begin with a number.

A function can have zero or more parameters, which are values that are passed to
the function statement(s). Parameters are also known as arguments. Value types are
not specified for the arguments or return values. Named arguments are local to the
function body, and functions can be called recursively.

The syntax for a function declaration is

name(<parameter1>, <parameter2>, ...)
{

<statements>
}

The syntax to call a function is

name(<parameter1>, <parameter2>, ...)

So, for example, a function named add can be declared like this:

add(x, y)
{

return x + y;
}

and called this way:

add(5, 6);

This would result in a return value of 11.

Every function returns a value. The return value is usually specified using a
return statement, but if no return statement is specified, the return value will
be the value of the last statement executed.

Arguments are not checked for appropriate value types or number of arguments
when a function is called. If a function is called with fewer arguments than were
defined, the specified arguments are assigned, and the remaining arguments are
assigned to null. If a function is called with more arguments than were defined, the
extra arguments are ignored. For example, if the function add is called with just
one argument

add(1);
 31

CATC SCRIPTING LANGUAGE CHAPTER 10

Reference Manual Functions
the parameter x will be assigned to 1, and the parameter y will be assigned to null,
resulting in a return value of 1. But if add is called with more than two arguments

add(1, 2, 3);

x will be assigned to 1, y to 2, and 3 will be ignored, resulting in a return value of 3.

All parameters are passed by value, not by reference, and can be changed in the
function body without affecting the values that were passed in. For instance, the
function

add_1(x, y)
{

x = 2;
y = 3;
return x + y;

}

reassigns parameter values within the statements. So,

a = 10;
b = 20;
add_1(a, b);

will have a return value of 5, but the values of a and b won't be changed.

The scope of a function is the file in which it is defined (as well as included files),
with the exception of primitive functions, whose scopes are global.

Calls to undefined functions are legal, but will always evaluate to null and result in
a compiler warning.
32

CATC SCRIPTING LANGUAGE CHAPTER 11

Reference Manual Primitives
CHAPTER 11: PRIMITIVES
Primitive functions are called similarly to regular functions, but they are imple-
mented outside of the language. Some primitives support multiple types for certain
arguments, but in general, if an argument of the wrong type is supplied, the function
will return null.

Call()

Call(<function_name string>, <arg_list list>)

Return value

Same as that of the function that is called.

Comments

Calls a function whose name matches the function_name parameter. All scope
rules apply normally. Spaces in the function_name parameter are interpreted as
the ‘_’ (underscore) character since function names cannot contain spaces.

Example

Call("Format", ["the number is %d", 10]);

is equivalent to:

Format("the number is %d", 10);

Format()

Format (<format string>, <value string or integer>)

Return value

None.

Parameter Meaning Default Value Comments

function_name string

arg_list list Used as the list of parameters in the function call.

Parameter Meaning Default Value Comments

format string

value string or integer
 33

CATC SCRIPTING LANGUAGE CHAPTER 11

Reference Manual Primitives
Comments

Format is used to control the way that arguments will print out. The format string
may contain conversion specifications that affect the way in which the arguments
in the value string are returned. Format conversion characters, flag characters, and
field width modifiers are used to define the conversion specifications.

Example

Format("0x%02X", 20);

would yield the string 0x14.

Format can only handle one value at a time, so

Format("%d %d", 20, 30);

would not work properly. Furthermore, types that do not match what is specified in
the format string will yield unpredictable results.

Format Conversion Characters
These are the format conversion characters used in CSL:

A conversion specification begins with a percent sign (%) and ends with a conver-
sion character. The following optional items can be included, in order, between the
% and the conversion character to further control argument formatting:

• Flag characters are used to further specify the formatting. There are five flag characters:

• A minus sign (-) will cause an argument to be left-aligned in its field. Without the
minus sign, the default position of the argument is right-aligned.

• A plus sign will insert a plus sign (+) before a positive signed integer. This only works
with the conversion characters d and i.

Code Type Output

c Integer Character

d Integer Signed decimal integer.

i Integer Signed decimal integer

o Integer Unsigned octal integer

u Integer Unsigned decimal integer

x Integer Unsigned hexadecimal integer, using "abcdef."

X Integer Unsigned hexadecimal integer, using "ABCDEF."

s String String

Table 11.1: Format Conversion Characters
34

CATC SCRIPTING LANGUAGE CHAPTER 11

Reference Manual Primitives
• A space will insert a space before a positive signed integer. This only works with the
conversion characters d and i. If both a space and a plus sign are used, the space flag
will be ignored.

• A hash mark (#) will prepend a 0 to an octal number when used with the conversion
character o. If # is used with x or X, it will prepend 0x or 0X to a hexadecimal
number.

• A zero (0) will pad the field with zeros instead of with spaces.

• Field width specification is a positive integer that defines the field width, in spaces, of the
converted argument. If the number of characters in the argument is smaller than the field
width, then the field is padded with spaces. If the argument has more characters than the
field width has spaces, then the field will expand to accommodate the argument.

GetNBits()

GetNBits (<bit_source list or raw>, <bit_offset
integer>, <bit_count integer>)

Return value

None.

Comments

Reads bit_count bits from bit_source starting at bit_offset. Will
return null if bit_offset + bit_count exceeds the number of bits in
bit_source. If bit_count is 32 or less, the result will be returned as an
integer. Otherwise, the result will be returned in a list format that is the same as the
input format. GetNBits also sets up the bit data source and global bit offset used
by NextNBits and PeekNBits. Note that bits are indexed starting at bit 0.

Example

raw = 'F0F0'; # 1111000011110000 binary
result = GetNBits (raw, 2, 4);
Trace ("result = ", result);

The output would be

Parameter Meaning Default Value Comments

bit_source list, raw, or
integer

Can be an integer value (4 bytes) or a list of inte-
gers that are interpreted as bytes.

bit_offset integer Index of bit to
start reading

from

bit_count integer Number of
bits to read
 35

CATC SCRIPTING LANGUAGE CHAPTER 11

Reference Manual Primitives
result = C # The result is given in
hexadecimal. The result in binary is 1100.

In the call to GetNBits: starting at bit 2, reads 4 bits (1100), and returns the value
0xC.

NextNBits()

NextNBits (<bit_count integer>)

Return value

None.

Comments

Reads bit_count bits from the data source specified in the last call to
GetNBits, starting after the last bit that the previous call to GetNBits or
NextNBits returned. If called without a previous call to GetNBits, the result is
undefined. Note that bits are indexed starting at bit 0.

Example

raw = 'F0F0';# 1111000011110000 binary
result1 = GetNBits (raw, 2, 4);
result2 = NextNBits(5);
result3 = NextNBits(2);
Trace ("result1 = ", result1, " result2 = ", result2,
" result3 = ", result3);

This will generate this trace output:
result1 = C result2 = 7 result3 = 2

In the call to GetNBits: starting at bit 2, reads 4 bits (1100), and returns the value
0xC.

In the first call to NextNBits: starting at bit 6, reads 5 bits (00111), and returns
the value 0x7.

In the second call to NextNBits: starting at bit 11 (= 6 + 5), reads 2 bits (10),
and returns the value 0x2.

Parameter Meaning Default Value Comments

bit_count integer
36

CATC SCRIPTING LANGUAGE CHAPTER 11

Reference Manual Primitives
Resolve()

Resolve(<symbol_name string>)

Return value

The value of the symbol. Returns null if the symbol is not found.

Comments

Attempts to resolve the value of a symbol. Can resolve global, constant and local
symbols. Spaces in the symbol_name parameter are interpreted as the ‘_’ (un-
derscore) character since symbol names cannot contain spaces.

Example

a = Resolve("symbol");

is equivalent to:

a = symbol;

Trace()

Trace(<arg1 any>, <arg2 any>, ...)

Return value

None.

Comments

The values given to this function are given to the debug console.

Example

list = ["cat", "dog", "cow"];
Trace("List = ", list, "\n");

would result in the output

List = [cat, dog, cow]

Parameter Meaning Default Value Comments

symbol_name string

Parameter Meaning Default Value Comments

arg any The number of arguments is variable.
 37

CATC SCRIPTING LANGUAGE CHAPTER 11

Reference Manual Primitives
38

CATC SCRIPTING LANGUAGE CHAPTER 12

Reference Manual Decoder Primitives
CHAPTER 12: DECODER
PRIMITIVES

Abort()

Abort()

Return value

An integer that should be passed back to the application unchanged.

Comments

Called when an input context renders the currently pending transaction done, but is
not itself a member of that transaction. An example would be an input transaction
that represents some sort of reset condition that renders all pending transactions
invalid. The input transaction is not consumed by this action and will go on to be
considered for other pending transactions.

Example

if (IsReset)
return Abort();

AddCell()

AddCell(<name string>, <value string>, <description
string or null>, <color integer or list>,
<additional_info any>)

Parameter Meaning Default Value Comments

N/A

Parameter Meaning Default Value Comments

name string Displays in the name field of the cell.

value string Displays in the value field of the cell.

description string or null Displays in tool tip.

color integer or list If not speci-
fied, a default
color is used

Color can be specified as either a packed color
value in an integer, or as an array of RGB values
ranging from 0-255. Displays in the name field
of the cell.
 39

CATC SCRIPTING LANGUAGE CHAPTER 12

Reference Manual Decoder Primitives
Return value

None.

Comments

Adds a display cell to the current output context. Cells are displayed in the order
that they are added. The name and value strings are displayed directly in the cell.

Example

Create a regular cell named Normal with a value
"Cell" and tool tip "Normal cell":

AddCell("Normal", "Value1", "Normal cell");

Use the _MONOCOLOR value in the additional_info
parameter to create a cell with a color value of
0x881122 in both the name and value fields:

AddCell("MonoColor", "Value2", "MonoColor cell",
0x881122, _MONOCOLOR);

Use the _MONOFIELD value to create a cell with only
a name field:

AddCell("MonoField", "Value3", "MonoField cell",
[255, 200, 200], _MONOFIELD);

Use the _ERROR value to create a cell with a red
value field:

AddCell("Error", "Value4", "Error cell", 0xcc1155,
_ERROR);

Use the _WARNING value to create a cell with a yellow
value field:

additional_info any Used to create special cells or to modify cell
attributes. The values are predefined constants,
and zero or more of them may be used at one
time. Possible values are:
_COLLAPSED
_ERROR
_EXPANDED
[_FIXEDWIDTH, w]
_HIDDEN
_MONOCOLOR
_MONOFIELD
_SHOWN (default)
_WARNING

Parameter Meaning Default Value Comments
40

CATC SCRIPTING LANGUAGE CHAPTER 12

Reference Manual Decoder Primitives
AddCell("Warning", "Value5", "Warning cell",
0x00BB22, _WARNING);

Use the [_FIXEDWIDTH, w] value to create a cell with
a fixed width of 20 in conjuction with the error value
to create a fixed width cell with a red value field:

AddCell("Fixed Width 20", "Value6", "Fixed Width and
Error cell", 0x001122, [_FIXEDWIDTH, 20], _ERROR);

The output of the example is:

AddDataCell()

AddDataCell(<data_value raw, list or integer>,
<additional_info any>, ...)

Return value

None.

Comments

Creates an expandable/collapsible cell for viewing raw data such as data payloads.
Data can be raw bytes, an integer, or a list. If an integer is used, it will be interpreted
as 4 bytes of data. Specifying _BYTES or _DWORDS in an additional_info
field will force data to be interpreted as bytes or quadlets. _COLLAPSED,
_EXPANDED, _HIDDEN and _SHOWN are all interpreted the same is in a regular
AddCell call.

Figure 12-1: Example output for AddCell

Parameter Meaning Default Value Comments

data_value raw, list, or
integer

Interpreted the same way as GetNBits inter-
prets data_source

additional_info any Used to create special cells or to modify cell
attributes. Possible values are:
_BYTES
_COLLAPSED
_DWORDS
_EXPANDED
_HIDDEN
_SHOWN (default)
 41

CATC SCRIPTING LANGUAGE CHAPTER 12

Reference Manual Decoder Primitives
Example

Creates a data cell with 2 dwords (32-bit integers)
of data.

AddDataCell('0123456789ABCDEF', _DWORDS);

Creates a data cell with 4 bytes. Integer data
values are always interpreted as 32 bits of data.

AddDataCell(0x11223344, _BYTES);

The output of the example is:

AddEvent()
AddEvent(<Group string>, <Value string>)

Return value

None.

Comments

Events are used for transaction searching and for transaction summary. This
function is only effective when called during the ProcessData() phase of
decoding. Event groups and values are stored globally for transaction levels and
new ones are created as they are encountered. Each transaction contains informa-
tion as to which events were associated with it.

Example

AddEvent("DataLength", Format("%d",
out.DataLength));

Figure 12-2: Example output for AddDataCell

Parameter Meaning Default Value Comments

Group string The name of
the group

Corresponds to the name of a field that might be
encountered while decoding.

Value string A value that
will be

associated
with the group

Corresponds to a field value that might be
encountered while parsing.
42

CATC SCRIPTING LANGUAGE CHAPTER 12

Reference Manual Decoder Primitives
AddSeparator()

AddSeparator(<additional_info any>, ...)

Return value

None.

Comments

Creates a separator cell. _COLLAPSED, _EXPANDED, _HIDDEN, and _SHOWN
are all interpreted the same is in a regular AddCell call.

Example

AddCell("Stuff", "Things");

AddSeparator adds a space between the previous and
subsequent cells.

AddSeparator();

AddCell("More stuff", "More things");

The output of the example is:

BeginCellBlock()

BeginCellBlock(<name string>, <value string>,
<description string or null>, <color integer or list>,
<additional_info any>)

Parameter Meaning Default Value Comments

additional_info any Used to create special cells or to modify cell
attributes. The values are predefined constants.
Possible values are:
_COLLAPSED
_EXPANDED
_HIDDEN
_SHOWN (default)

Figure 12-3: Separator cell
example

Parameter Meaning Default Value Comments

name string Displays in the name field of the cell.
 43

CATC SCRIPTING LANGUAGE CHAPTER 12

Reference Manual Decoder Primitives
Return value

None.

Comments

Begins a cell block and adds a block header cell. This is a special cell that can be
collapsed and expanded. The collapsed/expanded state of this cell affects cells in
the group according to their _COLLAPSED, _EXPANDED attributes. All calls to
AddCell after a call to BeginCellBlock() will put the new cells into this
group until a call to EndCellBlock is made.

Cell blocks can be nested.

Example

Begin the 'red' group. For clarity these cells will
be red:

BeginCellBlock("Red Group", null, null, 0x0000ff,
_MONOFIELD);

This cell will be displayed when the red group is in
the expanded state:

AddCell("Red is", "Expanded", null, 0x0000ff,
_EXPANDED);

value string Displays in the value field of the cell.

description string or null Displays in tool tip.

color integer or list If not speci-
fied, a default
color is used

Color can be specified as either a packed color
value in an integer, or as an array of RGB values
ranging from 0-255. Displays in the name field
of the cell.

additional_info any Used to create special cells or to modify cell
attributes. The values are predefined constants,
and zero or more of them may be used at one
time. Possible values are:
[_BLOCKNAME, x]
_COLLAPSED
_ERROR
_EXPANDED
[_FIXEDWIDTH, w]
_HIDDEN
_MONOCOLOR
_MONOFIELD
_SHOWN (default)
_WARNING

Parameter Meaning Default Value Comments
44

CATC SCRIPTING LANGUAGE CHAPTER 12

Reference Manual Decoder Primitives
This cell will be displayed when the red group is
collapsed:

AddCell("Red is", "Collapsed", null, 0x0000ff,
_COLLAPSED);

This begins the nested blue group. Nothing in the
blue group will be displayed unless the red group is
expanded:

BeginCellBlock("Blue Group", null, null, 0xff0000,
_MONOFIELD, _EXPANDED, [_BLOCKNAME, "BlockName"]);

This cell is only displayed when the blue group is
visible and expanded:

AddCell("Blue is", "Expanded", null, 0xff0000,
_EXPANDED);

This cell is also only displayed when the blue group
is visible and expanded:

AddCell("Blue", "Too", null, 0xff0000, _EXPANDED);

This cell is only displayed when the blue group is
visible and collapsed:

AddCell("Blue is", "Collapsed", null, 0xff0000,
_COLLAPSED);

This ends the blue group.

EndCellBlock();

Cells with the _SHOWN attribute are always
displayed. This is the default:

AddCell("Always", "Shown", null, 0x0000ff, _SHOWN);

This cell will never be displayed. In a real script
this would be driven by a variable:

AddCell("Never", "Shown", null, 0x0000ff, _HIDDEN);

This ends the red group.

EndCellBlock();
 45

CATC SCRIPTING LANGUAGE CHAPTER 12

Reference Manual Decoder Primitives
The output of the example is:

Complete()

Complete()

Return value

An integer that should be passed back to the application unchanged.

Comments

This should be called when it has been decided that an input context has been
accepted into a transaction, and that the transaction is complete. The return value
of this function should be passed back to the application from the ProcessData
function. This function could be used to associate the input context with the output
context.

Example

if (done)
return Complete();

Figure 12-4: Example output for
BeginCellBlock with red group

collapsed

Figure 12-5: Example output for BeginCellBlock with red group
expanded and blue group collapsed

Figure 12-6: Example output for BeginCellBlock with red group expanded
and blue group expanded

Parameter Meaning Default Value Comments
46

CATC SCRIPTING LANGUAGE CHAPTER 12

Reference Manual Decoder Primitives
EndCellBlock()

EndCellBlock()

Return value

None.

Comments

Ends a cell block that was started with
BeginCellBlock().

Example

See BeginCellBlock().

GetBitOffset()

GetBitOffset()

Return value

None.

Comments

Returns the current bit offset that is used in NextNBits or PeekNBits.

Example

raw = 'F0F0';# 1111000011110000 binary
result1 = GetNBits (raw, 2, 4);
result2 = PeekNBits(5);
result3 = NextNBits(2);
Trace ("Offset = ", GetBitOffset());

The example generates this Trace output:
Offset = D

Parameter Meaning Default Value Comments

Parameter Meaning Default Value Comments

N/A
 47

CATC SCRIPTING LANGUAGE CHAPTER 12

Reference Manual Decoder Primitives
PeekNBits()

PeekNBits(<bit_count integer>)

Return value

None.

Comments

Reads bit_count bits from the data source. The difference between
PeekNBits and NextNBits is that PeekNBits does not advance the global
bit offset. PeekNBits can be used to make decisions about how to parse the next
fields without affecting subsequent calls to NextNBits. If PeekNBits is called
without a prior call to GetNBits, the result is undefined. Note that bits are indexed
starting at bit 0.

Example

raw = 'F0F0';# 1111000011110000 binary
result1 = GetNBits (raw, 2, 4);
result2 = PeekNBits(5);
result3 = NextNBits(2);
Trace ("result1 = ", result1, " result2 = ", result2,
" result3 = ", result3);

This will generate this Trace output:
result1 = C result2 = 7 result3 = 0

In the call to GetNBits: starting at bit 2, reads 4 bits (1100), and returns the value
0xC.

In the call to PeekNBits: starting at bit 6, reads 5 bits (00111), and returns the
value 0x7.

In the call to NextNBits: starting at bit 6, reads 2 bits (00), and returns the value
0x0.

Pending()

Pending()

Parameter Meaning Default Value Comments

bit_count integer

Parameter Meaning Default Value Comments
48

CATC SCRIPTING LANGUAGE CHAPTER 12

Reference Manual Decoder Primitives
Return value

An integer that should be passed back to the application unchanged.

Comments

This should be called when it has been decided that an input context has been
accepted into a transaction, but that the transaction still requires further input to be
complete. This function could be used to associate input contexts with the output
context. The return value of this function should be returned to the application in
the ProcessData function.

Example

if (done)
return Complete();
else return Pending();

Reject()

Reject()

Return value

An integer that should be passed back to the application unchanged.

Comments

Called when it is decided that the input context does not meet the criteria for being
a part of the current transaction. The output context should not be modified before
this decision is made. The return value of this function should be returned by the
ProcessData function.

Example

if (UnknownValue)
return Reject();

Parameter Meaning Default Value Comments
 49

CATC SCRIPTING LANGUAGE CHAPTER 12

Reference Manual Decoder Primitives
50

CATC SCRIPTING LANGUAGE CHAPTER 13

Reference Manual Modules
CHAPTER 13: MODULES
Modules are a collection of functions and global data dedicated to decoding a
certain type of transaction. Each module consists of one primary file (.dec), and
possibly several included files (.inc).

Module Functions
Three functions are used as entry-points into a decoding module. They are called
by the application and are used both in the initial transaction decoding phase, and
each time that a transaction needs to be displayed.

ProcessData()

Called repeatedly with input contexts representing transactions of the specified
input types. Decides if input transaction is a member of this transaction, or if it
begins a new transaction. This function will be called first using incomplete output
transactions. If the input transaction is not accepted into any of the pending trans-
actions, it will be called with an empty output transaction to see if it starts a new
transaction.

CollectData()

Called with each input transaction that was previously accepted by the function
ProcessData. Generates all output context data that would be required for input
into a higher level transaction.

BuildCellList()

Called with the output context generated by the call to CollectData, and no
input context. This function is responsible for adding display cells based on the data
collected by CollectData.

Note that there is some flexibility in the use of these functions. For example, if it is
easier for a particular protocol to build cells in CollectData, cells could be
generated there, and BuildCellList could be left empty. Another approach
would be to have ProcessData do everything (generate output data, and build
cell lists) and then implement CollectData as a pass-thru to ProcessData.
This will be less efficient in the decoding phase but may reduce some repetition of
code. These decisions are dependent on the protocol to be decoded.
 51

CATC SCRIPTING LANGUAGE CHAPTER 13

Reference Manual Modules
Module Data
There are several standard global variables that should be defined in a module
which are queried by the application to figure out what the module is supposed to
do.

ModuleType

Required. A string describing the role of the script. Currently, only
Transaction Decoder and DataBlock Decoder are valid.

Example

set ModuleType = "Transaction Decoder";

Transaction Decoder uses ProcessData(). DataBlock Decoder
does not.

OutputType

Required. A string label describing the output of the script. Example : AVC
Transaction

Example

set OutputType = "AV/C Transaction";

InputType

Required. A string label describing the input to the script. Input and output types
should be matched by the application in order to decide which modules to invoke
on which contexts.

Example

set InputType = "1394 Transaction";

LevelName

Optional. A string that names this decoder.

Example

set LevelName = "AV/C Test Transactions";

DecoderDesc

Optional. A string that describes this decoder. Displays as a toolbar icon tool tip.

Example

set DecoderDesc = "View test transactions";
52

CATC SCRIPTING LANGUAGE CHAPTER 13

Reference Manual Modules
Icon

Optional. File name of an icon to display on the toolbar. Must be a 19x19 pixel
bitmap file.

Example

set Icon = "bitmap.bmp";
 53

CATC SCRIPTING LANGUAGE CHAPTER 13

Reference Manual Modules
54

CATC SCRIPTING LANGUAGE CONTACT INFO

Reference Manual
How to Contact CATC
Type of Service Contact

Call for technical support… US and Canada: 1 (800) 909-2282

Worldwide: 1 (408) 727-6600

Fax your questions… Worldwide: 1 (408) 727-6622

Write a letter… Computer Access Technology Corp.
Customer Support
3385 Scott Blvd.
Santa Clara, CA 95054
USA

Send e-mail… support@CATC.com

Visit CATC’s web site… http://www.CATC.com/
 55

CATC SCRIPTING LANGUAGE CONTACT INFO

REFERENCE MANUAL
56

	Table of Contents
	Chapter 1: Introduction
	Features of CATC Scripting Language
	New in CSL Version 1.1
	New in Document Revision 1.11
	New in Document Revision 1.12

	Chapter 2: Values
	Literals
	Integers
	Strings
	Escape Sequences

	Lists
	Raw Bytes
	Null

	Variables
	Global Variables
	Local Variables

	Constants

	Chapter 3: Expressions
	select expression

	Chapter 4: Operators
	Operations
	Operator Precedence and Associativity

	Chapter 5: Comments
	Chapter 6: Keywords
	Chapter 7: Statements
	Expression Statements
	if Statements
	if-else Statements
	while Statements
	for Statements
	return Statements
	Compound Statements

	Chapter 8: Preprocessing
	Chapter 9: Context
	Chapter 10: Functions
	Chapter 11: Primitives
	Call()
	Format()
	Format Conversion Characters

	GetNBits()
	NextNBits()
	Resolve()
	Trace()

	Chapter 12: Decoder Primitives
	Abort()
	AddCell()
	AddDataCell()
	AddEvent()
	AddSeparator()
	BeginCellBlock()
	Complete()
	EndCellBlock()
	GetBitOffset()
	PeekNBits()
	Pending()
	Reject()

	Chapter 13: Modules
	Module Functions
	ProcessData()
	CollectData()
	BuildCellList()

	Module Data
	ModuleType
	OutputType
	InputType
	LevelName
	DecoderDesc
	Icon

	How to Contact CATC

